Source-like solution for radial imbibition into a homogeneous semi-infinite porous medium
نویسندگان
چکیده
We describe the imbibition process from a point source into a homogeneous semi-infinite porous material. When body forces are negligible, the advance of the wetting front is driven by capillary pressure and resisted by viscous forces. With the assumption that the wetting front assumes a hemispherical shape, our analytical results show that the absorbed volume flow rate is approximately constant with respect to time, and that the radius of the wetting evolves in time as r ≈ t. This cube-root law for the long-time dynamics is confirmed by experiments using a packed cell of glass microspheres with average diameter of 42 μm. This result complements the classical one-dimensional imbibition ∗ Corresponding Author. E-mail: [email protected]
منابع مشابه
Comment on "Source-like solution for radial imbibition into a homogeneous semi-infinite porous medium".
We describe the imbibition process from a point source into a homogeneous semi-infinite porous material. When body forces are negligible, the advance of the wetting front is driven by capillary pressure and resisted by viscous forces. With the assumption that the wetting front assumes a hemispherical shape, our analytical results show that the absorbed volume flow rate is approximately constant...
متن کاملThree-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.
In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...
متن کاملThree-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.
In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...
متن کاملStudy of Solute Dispersion with Source/Sink Impact in Semi-Infinite Porous Medium
Mathematical models for pollutant transport in semi-infinite aquifers are based on the advection-dispersion equation (ADE) and its variants. This study employs the ADE incorporating time-dependent dispersion and velocity and space-time dependent source and sink, expressed by one function. The dispersion theory allows mechanical dispersion to be directly proportional to seepage velocity. Initial...
متن کاملStudy of Solute Dispersion with Source/Sink Impact in Semi-Infinite Porous Medium
Mathematical models for pollutant transport in semi-infinite aquifers are based on the advection-dispersion equation (ADE) and its variants. This study employs the ADE incorporating time-dependent dispersion and velocity and space-time dependent source and sink, expressed by one function. The dispersion theory allows mechanical dispersion to be directly proportional to seepage velocity. Initial...
متن کامل